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Abstract

The use of the Global Positioning System (GPS) as a

navigation aid for aircraft attempting to locate a ground-based

electromagnetic energy emitter is studied. In particular, the

satellite geometry which yields minimum errors in the emitter

location estimation for four different satellite availability

cases is explored. This geometry, in general, is not the same

as that which yields minimum aircraft navigation errors.

Satellite selection criteria are identified and serve as a basis

for selection algorithm development.

The research shows that emitter location errors can be

significantly reduced by selecting satellites based on the

criteria presented in this study. Three satellite performance

is found to be nearly as good as that obtained using four

satellites and, for the two satellite case, emitter location is

still better for some period of time than that obtained using

four satellites selected to minimize Geometric Dilution of

Precision (GDOP).
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OPTIMAL SELECTION OF GLOBAL POSITIObING SYSTEM SET
TO MINIMIZE EMITTER LOCATION ERRORS

I. INTRODUCTION

1.1 BACKGROUND

The use of aircraft equipped with electro-magnetic energy

receivers to determine the location of an emitter has many p

military, as well as civilian, applications. Missions such as

strategic and tactical reconnaissance, as well as airborne

search and rescue, require accurate determination of an emitter

location. The difficulty faced by these airborne collectors is

that in order to determine an emitter location precisely, they

must establish their own position very accurately. This "U

difficulty is compounded by the fact that, for many

applications, a global positioning capability is required.

Although many navigation systems such as LORAN and OMEGA provide

substantial capability, the Global Positioning System (GPS)

provides continuous global coverage with much greater accuracy.

However, in order to obtain highly accurate observer position

information, it is necessary that the airborne platform select

the appropriate satellites from the available constellation of

satellites which will yield optimum emitter location solution

geometry. Ideally, the satellite selection criterion should

optimize the accuracy of the emitter location estimation.

S%.
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1.2 PROBLEM AND SCOPE

The problem is to determine the positions of three airborne

collectors and four GPS satellites such that errors in the k %

estimate of emitter location will be minimized. In this case,

optimum position is defined as that position which results in a

minimum value for the emitter location estimate mean squared

miss distance (MSMD), or alternatively, the circular error

probable (CEP). The MSMD is a scalar cost function of the

emitter location errors, which in turn is a function of the

satellite position geometry expressed in the Kalman filter

measurement equation. The local minimum CEP cost value is

obtained using a steepest descent gradient search algorithm.

This study examines the impact of both satellite positions

and collector positions on emitter location errors. It also

investigates emitter location accuracy after degrading to three

and two satellite operation. Additionally, an algorithm is

developed which selects the optimum satellite configuration for

minimum emitter location errors. Note that the goal is not to

develop the "best possible" emitter location system, but to

determine the optimal satellite geometry which minimizes emitter

location error. Therefore, a highly elaborate truth model is

not required.

2.
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1.3 SUMMARY OF CURRENT KNOWLEDGE

The NAVSTAR Global Positioning System is a space-based

radio-positioning navigation system which provides highly

accurate three-dimensional position and velocity information on

a global basis to a very large number of users (9:146). In

general, at least four satellites are required to solve the four

time-difference-of-arrival equations for the three dimensional

position and the user receiver clock error (1:85). Since the

GPS generally allows the user to view six or more satellites at

any given time, it is necessary to select the combination of

satellites that will give the most accurate position information

(3:8). The effect that satellite geometry has on ranging

accuracy can be expressed in terms of Geometric Dilution of

Precision (GDOP) (3:8). An algorithm which maximizes navigation

accuracy selects the combination of four satellites that yields

the smallest value of GDOP (3:8). It should be noted that

although the minimum GDOP criteria results in minimum user

position errors, it "... does not generally result in minimum

emitter location errors" (4:64). This is due to two factors.

One is that vertical collector position errors contribute

negligibly to emitter location errors since the emitter is

assumed to be on the surface of the earth. The second is that

the collector position errors are mapped through the nonlinear

hyperbolic functions to the emitter location errors (10). The

use of joint estimation of emitter position with observer

'I,"I
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position produces emitter location errors which are

significantly smaller than estimates based on satellite

selection using minimum GDOP criteria (4:93). It is also noted

that the joint estimator significantly outperforms the two stage

estimation process where the observer navigation problem is

solved first, followed by solution for the emitter position.

The price which is paid for the gains obtained by using a joint

estimator is an increase in computational loading. During his

research at the Massachusetts Institute of Technology,

Lewantowicz (4) investigated system performance when using only

three satellites and found that emitter location accuracy was

very nearly the same as that obtained using four satellites.

Additionally, he demonstrated that degraded operation using only

two satellites and a precise clock yields an acceptably accurate

emitter location solution.

A number of assumptions necessary to define and adequately

limit the problem are presented in the next section.

1.4 ASSUMPTIONS
o

The following assumptions are made at the outset of the

problem:

1. There are three airborne collectors operating

simultaneously.

2. Each collector platform has a high grade Inertial Navigation

System (INS) with barometric altimeter data available. The

4
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external altitude measurement is available to stabilize the

inherently unstable vertical channel of the INS.

3. Each collector has measurements available from four GPS
F.P1

satellites. Further, each observer uses the same four

satellites for updates. This is a reasonable assumption since

the three platforms are operating in the same geographic area

and will "see" essentially the same constellation of available

satellites.

4. The GPS satellites selected should lie at or above five

degrees elevation from the local horizon measured from the

center of the collector geometry. Lower elevation angles

increase ranging errors due to propagation effects.

5. The collectors use a passive emitter locating method known

as the hyperbolic location system (10).

6. A constrained emitter-collector geometry is assumed. This

assumption narrows the problem to that where the approximate

emitter location in general is initially known or crudely

measured.

N-1

1.5 GENERAL APPROACH

Parameter optimization is used to solve a set of emitter

location problems assuming various satellite availability

constraints as outlined by the following.

IN
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OPTIMU SATELLITE POSITION.5

During this portion of the study the four GPS satellite

positions are selected from among an infinite set on the orbital S.

sphere using the cost gradient search. The collectors executed

their predetermined orbits. The cost is formulated as a

function of GPS satellite positions and is computed using the

Kalman filter covariance matrix function. The filter covariance

matrix is a function of the measurement observation matrix,

which in turn depends on the satellite positions. Thus, for a 5

steady-state Kalman filter solution, the cost function depends

only on the satellite positions. Therefore, the gradient vector

of this scalar cost function indicates the magnitude and

"direction of movement" for each satellite at update time. The

navigation Kalman filter is allowed to reach steady state from

the same initial conditions at each cost computation point '

before satellite "movements" are computed. It is hypothesized

that information retained by iterating the filter only one time

* between satellite movements without reinitializing the Kalman

filter may have produced overly-optimistic CEPs as obtained by

Lewantowicz in his research (4). His motivation for iterating

only one time is the computational savings in the minimum cost

search.

THREE SATELLITE PERFORMANCE

Of the four satellites, three are moved to optimum

positions for this portion of the study, while the fourth

6



satellite remains fixed overhead to simulate the availability of

a precise clock onboard each collector platform. A second

analysis is accomplished using information from only three

satellites to determine the validity of the hypothesis that the

overhead satellite can be used to simulate a precise clock in a

three satellite problem. A comparison is made between the

results obtained using these two approaches. .S

TWO SATELLITE PERFORMANCE

This portion of the study is very similar to the three

satellite case. Given Kalman filter estimates of user clock

bias and user clock drift obtained using measurements from four

satellites, the number of visible satellites is reduced to only

two and the satellite positions are again optimized.

Comparisons are made with previous simulations to determine the

feasibility of two satellite operation.

DEVELOPMENT OF A SELECTION ALGORITHM

The results of the optimum satellite position analysis are

then used to construct a selection algorithm. The behavior of

the scalar cost as a function of satellite geometries are

studied to determine the characteristics of an "optimum

satellite geometry" and selection criteria are established.

-1 -W



1.6 THESIS OVERVIEW

The following chapters describe the problem structure, the

mechanics used in solving the problem, and the results obtained.

Chapter 2 develops the error dynamics and measurement

models used by the emitter locating system. The observer

navigation error state vector is augmented with the error states

associated with the emitter measurement process to obtain the

system error state vector. Measurement models are formulated

for observer navigation measurements, as well as emitter

measurements, and are linearized for use in linear estimation.

* Chapter 3 builds the structure of the discrete-time

extended K~alman filter which is used as the estimator for this

study. The cost function, based upon emitter location mean

squared miss distance, is developed as a function of the GPS

satellite positions. The emitter location CEP is also computed.

Finally, the minimum cost search technique used in this study,

the steepest descent weighted gradient algorithm, is described.0

Chapter 4 presents the results obtained when the GPS

satellites are moved to optimum positions, minimizing the error

in the emitter location estimate. The three satellite

performance is shown to be essentially the same as that obtained

using four satellites. Further, the use of only two satellites

8
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and filter estimates for user clock parameters yields reasonable

emitter location performance. Satellite selection criteria are

established based on the results obtained in the four satellite

optimization cases.

Chapter 5 presents conclusions and recommendations arising

from this study.

V
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II. ERROR DYNAMICS AND MEASUREMENT MODELS

2.1 INTRODUCTION

In general, locating an electromagnetic emitter requires a

method for determining the observer's position, as well as a

method for distinguishing signals intercepted from an emitter.

For the simplified case of a stationary observer, the observer

position can be very accurately determined by means of a precise

survey. However, for such applications as airborne search and

rescue operations, the observers must move in order to provide

the required coverage of the vast areas involved. The problem

of determining the position of these moving observers requires a

navigation system capable of providing highly accurate position

information on a global basis.

In this study, the system used by each observer to provide

this high quality position data is a high grade inertial

navigation system (INS) which is updated by measurements from

four GPS space vehicles (SV) and stabilized by measurements

from a barometric altimeter. As pointed out in Section 1.4, the

GPS satellites selected lie at or above five degrees elevation "
from the local horizon and each observer uses the same four

satellites for updates. Note that the following models and

derivations correspond to those used and developed by

Lewantowicz in his thesis (4).

10

LV

9 '.
: i0 ""

V -o % .



.1*.

The method used to analyze the performance of the emitter

location system is a linearized error covariance analysis of the

estimated errors. To perform this analysis, the state vector

representing the actual system state is given by Xa(t) and the

estimate of the state vector at the same time t is given by
A
x(t). The error state vector, x(t), can then be defined as

.

X(t) X a(t) - 2;(t) (2-1)
tP

which satisfies in general the vector differential equation

X(t) - t(X,t) + G w(t) (2-2)

(O) --

whr

where f is a time-varying vector valued function of x(t)

describing the error state dynamics. The matrix G is the time

invariant noise distribution matrix, and w is an independent

zero-mean white Gaussian noise process with covariance kernel

E[w(t)wT(t + T)] = Q(t) 5(7) (2-3)

where E is the expectation operator, Q is a diagonal matrix, and

is the Dirac delta function.

The measurement process for the estimator is well modelled

by

11 
e
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Z(t) = h(x,t) + v(t) (2-4)

where h is a time-varying vector valued function of the error

state x. The measi"rement noise v(t) is an independent zero-mean

white Gaussian noise process with covariance kernel

E[v(t)vT(t + T)] = R T(r) (2-5)

where R is a diagonal matrix.
.

'S%

Given this system model, an extended Kalman filter is used

to estimate navigation errors. This filter is discussed in

Section 3.2. System dynamics and measurement models for

navigation and emitter location are discussed in Sections 2.2

through 2.4.

2.2 OBSERVER NAVIGATION SYSTEM
*' %

A number of systems are available which can provide

navigation data to airborne observers. These include time-

difference-of-arrival (TDOA) type systems such as LORAN and

OMEGA and range measurement type systems using Distance

Measuring Equipment (DME) measurements to surveyed stations on

the ground. These systems are, in general, limited by

combinations of accuracy, availability or areas of coverage. A

performance improvement over these systems is provided by GPS.

12
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The NAVSTAR GPS, when fully operational, will consist of a

constellation of 18 SVs, 3 in each of 6 orbital planes (9:146).

The GPS has potential for providing highly accurate three-

dimensional position and velocity information along with

Coordinated Universal Time (UTC) to a very large number of

suitably equipped users. The orientation of the satellite

orbits generally allows the observer to view six or more

satellites at any given time, thus providing adequate navigation

information on a global basis (3:18). The GPS SV transmits an

encoded navigation message from which the receiver can determine

the pseudo-range to the SV with a very high degree of accuracy.

The locus of points for each pseudo-range measurement describes

a sphere whose center is at the SV. The point where three

spheres intersect provides the observer with position

information in three dimensions. Since the observer generally

uses a fairly inaccurate crystal clock, a fourth pseudo-range

measurement is used to determine the user clock bias. Most of

the error sources associated with the GPS can be effectively

minimized by error modelling and the use of Kalman filtering to

estimate these errors. As a result, the GPS is capable of

providing much more accurate position information than most

other navigation systems. Because of this high degree of

accuracy and the global positioning capability of the GPS, a

high-grade INS is combined with the GPS to form the navigator

* which is used for the emitter locating system in this study.

1.3
13 ".13
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2.2.1 THE INERTIAL NAVIGATION SYSTEM

The INS system errors are modelled using 16 states, forming V

the state vectors xi, 2, and x3 " Note that there are three INS

error state vectors since each of the three airborne observers

has its own INS. Each of these state vectors is defined as

follows (4):
E o n

East position error
North position errorVertical position error-"-

East velocity error
North velocity error
Vertical velocity error

i= Roll error (east axis) (2-6)
Roll error (north axis)
Roll error (vertical axis)
Barometric altimeter error
Barometric sea level pressure variation
East accelerometer bias
North accelerometer bias
East gyro bias
North gyro bias
Vertical gyro bias

State vectors X2 and x3 are defined in the same manner. It

should be noted that the roll, pitch and yaw data in each body

frame are transformed to the East-North-Vertical (ENV)

navigation frame for each observer (4:17).

2.2.2 THE GLOBAL POSITIONING SYSTEM .

p..

The measurements available to update the inertial -

navigation system are pseudo-range measurements to the GPS SV

represented by

4.
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Rij c tij (2-7)

where Rij is the pseudo-range from the i-th observer to the j-th

SV, c is the speed of light, and tij is the travel time of the

signal. Because there are errors inherent in the system, this

pseudo-range measurement does not only represent the actual line

of sight (LOS) range to the SV, but includes several errors. -.

The error sources modelled for this study are uncalibrated

propagation errors in each GPS receiver channel, uncalibrated

offset and drift errors in each observer clock, code loop

interchannel biases, and LOS errors. These errors form the

state vectors X4 through X8 described by

X4 12 states for receiver propagation errors
X5 3 states for clock offsets
X6 3 states for clock drifts
X7 12 states for code loop interchannel bias
X8 4 states for LOS biases (1 per SV)

The augmented error state vector is formed by combining all

the error states as

xT T T. T ? T T T T (-, = [Xi 2 4 K ,K , 8 (2-8)"-.

The resulting error state column vector is of dimension 82.

Although models of higher dimensionality exist, the model

described is adequate for this study. Such assumptions as

straight, level, unaccelerated flight at high altitude reduce

the effect of other error sources allowing lower state vector

dimensionality.

15
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2.3 THE EMITTER MEASUREMENT SYSTEM %

States which describe the errors associated with the

emitter measurement process are added to the model. These

states are the emitter position, emitter-signal receiver time

delay calibration error for each observer, and the error in

modelling tropospheric delay along the line of sight from each

observer to the emitter. These errors form the state vectors xg

through xll and are described as

N9 3 states for emitter position errors
Xi0 3 states for receiver calibration errors

3 states for tropospheric delay errors

The total augmented error state vector, x(t) is formed by

augmenting state vectors x9 through li to Eqn. (2-8)

T _ T T T T T T T ? T -9
xT[XlF X2 1 X3 X4P X51 X6' X71 X8, X9, X1O' X11 (2-9

This final error state vector is of dimension 91.

Note that this formulation of the error state vector allows

joint estimation of emitter position with observer position so

that all available information is processed jointly at each

computation step. The result of this is that the solution is

optimal in the minimum mean-squared error (MMSE) sense (6).

Each measurement updates both the navigation position and the

emitter location. As a result, the emitter measurement can be

used to reduce navigation errors. The consequence of choosing

16
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the joint estimation scheme over a two-stage estimator (4) is an

increase in required computations. For this study, the

increased performance of the joint estimator justified the 4%

increased computational burden.

With the models for the error state dynamics and noise

inputs now developed, the next step is to model the measurements I

for the navigation update and the emitter update.

2.4 OBSERVER NAVIGATION AND EMITTER MEASUREMENTS

2.4.1 OBSERVER NAVIGATION MEASUREMENTS
5 .

The actual navigation measurement is the pseudo-range from

the observer to the GPS SV defined as the transit time of the

signal scaled by the speed of light. Each GPS signal carries an

encoded navigation message containing SV ephemeris data which

allows the position of the SV to be determined very accurately.

With this information, the observer can solve four equations in
p. I15

four unknowns. These unknowns are the three position components

of the navigation error state vector and the user clock bias .5.

error.

In addition to the inherent system errors in the GPS, other

error sources affect the accuracy of the pseudo-range

measurement. The significant errors are modelled and discussed

17 .'
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in this section. The errors induced by atmospheric delay result

primarily from ionospheric refraction. The change in apparent

path length brought about by ionospheric refraction can be

substantially reduced by employing dual frequency compensation

since each SV transmits two frequencies, f, and f2. The two

frequency compensation is based on the fact that the ionospheric

delay Sr is frequency dependent .

K (2-10) A
4f2

where

K = environmental constant
f = carrier frequency

Let At I denote transit time measurement at frequency f, and write

it as (4:23)

At= At + 8 1, + rI  (2-11)

where

At = the transit time of the signal (uncorrupted) .
5 I = ionospheric delay at frequency f
r= time measurement error due to other sources

Forming the ratio

.3,....

f2 2-

S, k/f:f]
- = -(2-12)

ST k/f f

5 18
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, @ ,, , '.:. '. - .-7.-;:;.;.? 1-:- -;; ' ;> :-:..'.. ,".;;.-,;5-..- .;.:... . -"..",-.. -;,?. v .. > ;..-/ .-.-.



yields

6T2 = - 87 (2-13)

Rewriting Eqn. (2-11) for frequency f2

At 2 = At + 2 + r2  (2-14)

Next, define the measurement difference between frequency f, and

f 2 , 8 At as

8At =At 1 - At 2  (2-15)

Solving for 8At by substituting Eqn. (2-11) and (2-14) into

(2-15) yields

6At = At + 8T1 + rI -At- 2 - r 2 (2-16) "-

= 871 - 672 + r I - r(-6

Substituting (2-13) for 8T2 produces

8At = 1 - S T,1 + rl - r 2

.,

= (1i 2) ST + rI - r2  (2-17)

19 1
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where

f2

Writing the compensated time delay measurement at frequency fl

Atc = AtAt
-c Ati (2-18)1 a

4-

Substituting (2-17) and (2-11) into (2-18) gives

aAt
Atc At + rI +r

rrI r

=At + S7i + rl ST _ _
11

= At + 1 r 2) r1  + r2

2 '

rIAt 2 rl + r2  (2-19)
1 

2 r.

Note that the ionospheric delay dependence has vanished, but r,

and r2 are still undefined. . .-'

20
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Let

rl = Y+ Atl + V1  (2-20)

r2 = Y2 + At 2 c + v 2  (2-21)

where Y, and Y2 are the GPS code loop measurement bias errors in

the two receivers. These errors are modelled as elements of "-";

state vector x4 while Atc, the user clock bias error, is

modelled by x5 , as described in Section 2.2.2. The terms v, and

v2 represent zero mean, white Gaussian measurement noise.

Substituting Eqn (2-20) and (2-21) into (2-19) to obtain

At At + -tc  - (Yi + v1 ) + (Y 2 + v 2 ) (2-22)
1 -2 (1 -a 2 )

where

atc = (At 2 c - a2 A tlc) / (1-a 2)

Since the compensated time delay measurement has been

determined, the ionospheric error compensated pseudo-range

measurement is obtained simply by multiplying by the speed of

light, c

2I

ca2  cc~t c =cAt + c~t c - (Yi + Vl) + 2 (Y2 2
1 -a (1 - 2) 2 + v2)(i -c t) tc;:.--,Y 1+v1 '
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or
~c 2  c

RC R + SR c  (Y 1 
+ vl) + 2 Y2 +  v 2 ) (2-23) .k1 - 2(i -.. 2 ) (Y2

With this range measurement model, the next step generates

the observation model for the range measurement between the i-th N,.

observer and the j-th GPS SV.

UU

~Let P(J) denote the position vector of the j-th GPS SV

expressed in the earth-centered earth-fixed (ECEF) coordinate

frame. The line-of-sight (LOS) vector from the i-th observer to "_

the j-th SV is then the vector _PAs(i,j). This geometry is shown

for the two-dimensional case in Figure 2.1. From this figure it "

is seen that

'-;'

A s ( i J ) -s (J ) PA(i) (2-24 ) N-

The range R(i,j) is a nonlinear function of PAs(i,j). If the

computed LOS vector is defined as As, then the range is given

by 
"

R(ij) = IPAs(ij)"

= IPs(i) - PA') I N.

=[pAs(ij) P(i j)]1/2  (2-25)

where II is the magnitude operator.

22
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FIG. 2.1. TWO DIMENSIONAL NAVIGATION MEASUREMENT GEOMETRY
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Since a linearized measurement model is required for
A

estimation, R(i,j) and Rc(i,j) are expanded in Taylor series

about the actual positions to first order yielding (4:27)

A

R = R + - 8Ps + - 5PA (2-26)

Taking the partial derivatives produces

: Ri, j) s (i, j) T -

- - UAs(i,j) (2-27)bPs(j) R(i,j)

and T

"_ _P_()-R_ , J)- s(ij) (2-28)

_-A R(i,j)

It should be noted that the first partial derivative of the

range is the unit line of sight vector. Thus, (2-26) becomes

,T
R(i,j) = R(i,j) + U s(i,j) [8Ps(j) - PA(i)] (2-29)

The linearized measurement, z(i,j), can be formed using

(2-23) and (2-29) as 0

z(ij) ; RC(ij) - R(i,j)

-- -As( ) 15ps(i) M- P(i)] + SRc(i) - ..___

c
Y (iJ) + vl(ij)] + 2 [Y2 (i'j) + v2 (ij)]

(2-30)
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The errors in observer position, 6PA(i), are the first three

elements of the inertial navigation system error state model

vectors xl 2, and_ as given by Eqn (2-6) for i=l, 2, 3

respectively. The GPS position errors, bPs(j), are modelled as

unknown biases along each j-th line of sight and are represented

by the error state vector x[ described in Section 2.2.2. Thus,

(2-30) can be written

ca2
. T CO~ciz(ij) = U (i,j)6PA(i) + Rc(i)- [Yl(i,j) + vl(i,j),

1 -, 
1

C ,'

-a 2  [Y2 (i'j) + v2 (i',j)] + bE(j) (2-31)

Note that the additional term bE(J) is added to account for

unmodelled LOS biases.

In order to reduce the dimension of the error state vector,

the code loop errors, Yl and Y2 , and the measurement noise

terms, v, and v2 , are combined respectively to obtain two random 1-'

-~ variables Y and v. By letting -.

ca 2  c S
Y(i~j) 1- 2 1 (i"j) + - Y2 (i,j)

1-a 
2

caf2  c
v(i,j) =- 2 vl(i'j) + 2 v 2 (i'J)
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* p

Eqn (2-31) is rewritten as

z(i,j) -U s(i,j)8PA(i) + SRc(i) + Y(i,j) + v(i,j) + b(j)

(2-32)

The code loop tracking errors are modelled as first-order

Markov processes such that the combined code loop dynamics are

given by

1 -
Y= - Y + w (2-33)

where T is a relatively long time constant given by

(2-34)
4 Bn

and Bn is the noise equivalent bandwidth of the code loop

tracking filter. The user clock offset error, BRc, is modelled .

as a constant drift '"

C

fc
bRc = -- c (2-35)

where Sfc is the user clock frequency error and 5fc/fc is a

random constant drift bias. Thus,

(2-36)

f c

26 "- -
S.-,o

_ -, . , , ; : , " , : , ' : . : ' " .: , , " , " . " . , . , . " " . .-" . " , .. " . . : " - " : < - " . : .- .- . S -



.~%.

These two states model the clock error. The equivalent pseudo-

range bias term, bE, is modelled as a random constant such that

bE M 0 (2-37)

With the navigation measurement model now complete, the

emitter measurement model is developed next.

r%"

2.4.2. EMITTER MEASUREMENTS e

Since the transmission time of a received emitter signal is

not known a priori, the transit time cannot be used to

determine the range to the emitter. The only information

available to each airborne observer is the time of arrival (TEA)

of the emitter signal at its receiver. For the case of the GPS

SVs, the quantities of interest require that computations be

done in three dimensions. However, for the case of the

observers and the emitter, the planar projection of the three

dimensional emitter location error ellipsoid onto the horizontal

surface is the quantity of most significance. This is because

it is assumed that the emitter vertical position is known with

sufficient accuracy. *-S

Using three independent measurements of the emitter signal,

one from each airborne observer, three TOA's are obtained with ."

the time differences of arrival (TDOA) defined as:

27
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-
TDOA1 2  TOA 1 - TOA2  (2-38) P

TDOA 2 3 = TOA 2 - TOA 3  (2-39)

The measurement TOA i can be written as the sum of the actual

TOAi and the measurement error BTOAi

TOAi = TOA i + 8TOAi (2-40)

Substituting (2-40) into the form of (2-38)

TDOAij = TOA i - TOAj + STOA i - 6TOAj (2-41)

Next the individual error terms making up STOA i are examined
(4:31)

5TOAi = 6TROPi + SRECi + SCLCK i + v i  (2-42)

where

,TROPi = time delay due to errors in tropospheric model

BRECi = time delay due to uncalibrated receiver delay

6CLCK i = observer clock bias error

vi  = measurement corruption noise

Next, Equation (2-42) is substituted into (2-41) yielding

.i 285PC ~g 0
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'.4%.4

TDOAij = TOA i -TOAj + SCLCKij + STROPi -STROPj '-

+ SRECi - SRECj + vij (2-43)

where

8CLCKij = 8CLCK i - BCLCKj

and

vij =vi - v.

The time difference of arrival in (2-43) is scaled by the speed

of light to yield the range difference

* ,R(i,j) =AR(i,j) + SRc(i) - 5Rc(j) + 6RT(i) - SRT(j)

+ SRR(i) - SRR(j) + v(ij) (2-44)

where ..

AR(i,j) = c(TOA i - TOAj)

AR(ij) = c(TOA i - TOAj)

5Rc(i) = c SCLCK i

SRT(i) = c 5TROPi

8 RR(i) = c SREC i

v(i,j) = c(v i - vj)

It should be noted that each vi is modelled as a white Gaussian

noise of mean zero and, further, that the vi's are independent

29
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vi =N [0,R]

, and (2-45)
V(i,j) = N [0,2R]

A

where R is the variance of each vi (4:32).

Note that the clock is assumed to be the same for the entire pu

emitter location problem. Therefore, the same clock error

states are shared for the navigation as well as the emitter

solution. The error terms of SRc, 8 RT, and 5RR are related to

the error state vector x(t) by noting that 5Rc is represented by

CX5 of Section 2.2.2, 6RT is represented by cxlI and SRR is

represented by cxl0 with X10 and xli described in Section 2.3.

As with the GPS measurement development in Section 2.4.1,

the next step develops the observation model from the range

measurement model.

A'

The error state observation is well modelled b 4

A
z(i,j) = AR(i,j) -AR(i,j) (2-46)

~~where ..

AR(i,j) = computed or estimated measurement

3
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I.,

Let -E denote the position vector of the emitter expressed in
A A A

the ECEF coordinate frame. Next, let PA(i) and PA(j) represent

the position vectors of the i-th and j-th observer aircraft

respectively, again expressed in the ECEF frame. The LOS "w

vectors from the emitter to the i-th and j-th observer are then
A A

the vectors PAE(i) and PAE(J), respectively. This measurement

geometry is described in two dimensions in Fig. 2.2. It is

noted from the figure that

A A A -,

PAE(i) R PE - EA(i) (2-47)

A 
r w

So the range difference AR(ij) is a nonlinear function of
"A A..

PAE(i) and PAE(J ). Using these computed lines of sight vectors

allows the range difference to be expressed as

A A A '-

AR(i,j) = IPAE(i) I - IPAE(J)I
A A, A A,,,,

IRE -P i I - IE - A(J)I (2-48)

Note that PA(i) and PAO) are those estimated quantities which

have been used in Equation (2-25) for deriving the navigation

measurement model. Again, a linearized measurement model is

required so AR(i,j) is expanded in Taylor series to first order

about the actual observer and emitter positions yielding
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I

B ART(i, j) BART(ij)
AR(i,j) =AR(i,j) + aPE + -PA i) !!

21ART (i~j) A(j Ai
+ AJ) (2-49)

PA(J) -A (

Evaluating each of the required partial derivatives using (2-48) "

yields p.

BART (ij)

= _ - - [ IPAE(i) I - iPAE(J)i ] (2-50)

F-P

Therefore, the partial derivatives of (2-49) are written as

TT , TBART(i~j) pTE (i)  pAE ()..

aPE Ri Rj

= AEi -i ~A(j) (2-51)

Again, note that the derivatives of the magnitudes of the LOS

vectors conveniently become the unit line of sight vectors; in S

this case from the i-th and j-th observers to the emitter. -

The third term on the right hand side of (2-49) is evaluated

T -~R(i,j) PAE Mi ''

i£A (i) Ri

33 F
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T
S- UE(2-52)

Finally, the last term in (2-49) is

T
BAR(i,j) P (j

PA ( i J)Ri

-- (j) (2-53) og

Substituting (2-44) and (2-49), with the partial derivatives -

evaluated, into (2-46) produces the required error measurement

equation

z(i,j) = SRc(i) - SRc(j) + BRT(i) - SRT(J)

+ SRR(i) - 8RR(j) + v(i,j)

T T T
- 1E (i) - AE (J)] 8 E + UAE(i)8 -PA(i)
- Ui E(j)A (j) (2-54)

This completes the model development for system error

dynamics, including the INS, GPS and emitter location system

* errors, as well as the measurement models for navigation and

emitter measurements. In the next chapter the estimator, cost

function, and cost gradient are developed.
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III.___ ESIMTR _N COST FUNCTION DEVELOPMENT

3.1 INTRODUCTION

The models developed in Chapter 2 are the cornerstones upon

which an estimator can be built. The purpose of this estimator

is to provide a time history of the statistical properties of

the error state vector x(t) as it is propagated forward in time

from some initial condition x(t) For this study, a

discrete-time, time-varying estimator is used. Because the

measurement model is nonlinear, an extended Kalman filter was

selected and is described in Section 3.2 of this chapter.

In order to develop a cost function for an emitter locating

system, it is necessary to examine the figures of merit

available for evaluating the performance of such a system. The ",

most obvious, and most crucial, performance criterion is the

accuracy with which the system can estimate the actual emitter

location. Although the accuracy of this estimate can be

expressed in any of several ways, the mean squared miss distance

serves as the basis for cost function development in this study.

The development of the cost function and some of its limitations

are described in Section 3.3. Using the derived cost function,

the cost gradient is developed in Section 3.4. Finally, the

minimum cost search technique used in this study is presented in

* Section 3.5.
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3.2 ESTIMATOR DEVELOPMENT

In order to use the Kalman filter as the estimator for this

study, certain assumptions need to be made. These assumptions

are that (1) the state dynamics model and the measurement model

are linear, (2) system dynamic driving noise and measurement

corruption noise processes are well described by Gaussian

processes, and (3) all system noise processes are well modelled

as "white". With these assumptions, the extended Kalman filter

is developed (6).

First, the nonlinear error state dynamics model given by

(2-2) is expanded in Taylor series about the current best

estimate of the error state vector and truncated to first order

terms

af(x,t) I
_(x,t) ._[_(t),t] + = x (3-1)

x x(t)

where Sx represents the error state vector. Defining

21f(x,t) I
F(t) = I A (3-2)

x IX = x(t)

produces the linearized dynamics model
,.%

x - F(t) + G w (3-3) 5
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Note that for the first time interval, the nominal point for

expansion is X(to) = x Also note that the model is

relinearized about the new estimate each time it is computed.

This allows the nominal trajectory to be updated on a continuing

basis to ensure that deviations from the nominal remain small.

Using the same approach for h(x,t), the nonlinear measurement

vector given by (2-4) is linearized. Define

-,

h(_x,t) i "

H(t) = A = (3-4)x_ Ix =x(t) .E

,i1,

resulting in the linearized measurement equation

z(ti) = H(ti)x + v (3-5)

Forming the equivalent discrete-time system model, Eqn (3-3)

becomes the stochastic difference equation '

x(ti+ I ) =1(ti+l,ti) x(ti) + wd(ti) (3-6)

where

E [Wd(ti)] =

E [Wd(ti) wd(ti)] = Qd(ti+l,ti) (3-7)

and

t

' Qd(t,ti) =f ti (t,r) G(r) Q(r) GT(r) IT(t,r) dr (3-8)
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Note that D(t,ti) is the state transition matrix such that

(to Ito)  1 (3-9) .

)(t 2 ' t o ) = )(t 2 , t l ) 4(t l , t O ) (3-10)

The measurement equation (3-5) already models discrete-time

measurements, so it remains unchanged. N

4I

Having satisfied the three initial assumptions in this

section, the Kalman filter equations are stated.

The estimate is propagated forward in time using (6):

1i+1
x(ti+I ) = x(t i ) + Jt* ffx(t/ti),t] dt

1

P(t+l)- (ti+lUti) P(t ) ( (3-i11

where

P(ti = 0) = Po (3-12)

and the measurement update equations are given by (6): -

K(ti) = P(ti) HT(ti) [H(ti) P(ti) HT(ti) + R(ti)]- I  (3-13)

ii

-- + K(ti) zi - H(ti) (3-14)

P(ti) =pt ) - (ti) Ht )Pt )(-5

03
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Using the assumptions presented at the beginning of this

section allows the conditional probability density function,

fx/~e,),to be completely described by only the first two

moments. This provides mathematical tractability and allows a

time history of x(t) to be generated, conditioned on all

measurements up through time t, by propagating only the

%conditional mean and the covariance. The second moment, the-

error covariance matrix P(t), is used for the error covariance

analysis in this study.

3.3 COST FUNCTION FORMULATION

In general, the figure of merit used to evaluate the

performance of an emitter locating system is the accuracy with

which the system can estimate the actual emitter location in

three dimensions. For this study, the problem reduces to an

essentially two-dimensional, or planar problem, due to the

assumption that the vertical emitter position is known

precisely. Therefore, the quantity of real interest is the

emitter location error ellipse formed by the projection of the

error ellipsoid onto the x-y plane. The error ellipse used in N

this study is the circular error probable (CEP) contour, which

is a contour of equal joint probability density that yields a

probability of 0.5 when integration of the probability density

funct ion is carried out over the area enclosed by the contour.
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The expression used for the CEP in this study is (4:40)

CEP = 0.5887 (ax + ay) (3-16)

Note that this expression represents the CEP for an actual

circle where ax and ay, the semi-major and semi-minor axes, are

equal. For the more realistic case where the equal probability

density contour is an ellipse with ax ' ay, it is found that

(3-16) approximates the true CEP to within three percent as long

a s ,'

a~x
0.15 < - < 1.0 (3-17)

a
y

Because of the validity of the approximation given by Eqn

(3-16), the cost function may be defined in terms of CEP. Since

the CEP is a function of a and ay, the error covariance matrix,

P(t), is examined to see how these quantities can be obtained. .

First, the two states of interest are the emitter location

errors in the horizontal plane, x(83) and x(84). The four

elements of P(t) needed to obtain ax and ay are given by

I Pt(83,83) Pt(83,84) J
Pemit I I (3-18)

I Pt(84,83) Pt(84,84) I

-p
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or in simplified notation

IPl P12
Pemit ffi  I 1 (3-19)

-- P21 P2 2  f $3

Note that the eigenvalues of Pemit are the magnitudes of the

principal axes of the error ellipse and the eigenvectors

represent the principal axes directions. If it is assumed that

the principal axes are rotated only a very small amount from the

coordinate axes, then the cross covariance terms PI2 and P2 1 are
12.

approximately zero and the diagonal terms are given as

Pll = ax and P22  y (3-20)

Now it is possible to define a mean squared miss distance cost

function, J, as

j(ps) = ax + Oy

= Pll + P2 2  (3-21)

which is related to the root mean square (RMS) miss distance by

RMS= Jl/2 (3-22)

-.'V

An alternate method is to define the cost function in terms of

the CEP such that JCEP is given by

41
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JCEp(Ps) = Ox + oy (3-23)

which is directly related to CEP by *1a .

CEP = 0.5887 JCEP(_Ps) (3-24)

As pointed out by Lewantowicz (4), the cost gradient for mean

squared miss distance computation g(Ps), is easier than the

computation for the CEP cost gradient, gCEP(Ps). For this

reason, J(-Ps) given by (3-21), the mean squared miss distance

cost, is the cost function which is actually minimized in this .

study. The results are presented in terms of both CEP and RMS

miss distance.

Note that the error covariance matrix, P(ti), is iterated

from the initial conditions to steady-state values at each step "°

of the cost search. This prevents the accumulation of past SV

q position related information in the cross-covariance terms of ,5O

the P matrix as the satellite geometry changes.

Using the cost function described by (3-21), the cost :

gradient is developed.

3.4 COST GRADIENT FORMULATION

°-o

To accomplish the MSMD cost gradient computation it is

convenient to express (3-21) in compact matrix notation where

Z' 42
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J(Ps) = tr [ E Pt

= Pt(83,83) + Pt(84,84) (3-25)

where

E is a square 91 x 91 matrix of all zeros, except for l's

in the 83rd and 84th diagonal positions.

and

Pt is the error covariance matrix at time t

From (3-25) and (3-11), it can be seen that the cost J is a

function of the vector Ps described in Section 2.4.1. This P

starts out as a 12 dimensional vector describing the three-

dimensional position of each of 4 satellites in the ECEF frame.

Note that the vector P. is constrained by the fixed orbital A-

radius of the GPS satellites. For the j-th satellite, the

vector is constrained such that (4:68)

2 2 2 1/2xj (R-s yj zj (3-26)

The geometry chosen is such that the x-axis of the ECEF frame

passes through the "center" of the observer geometry, where the

center is defined as a point equidistant from the endpoints of a

line segment connecting observer 1 and observer 3. The y-z

plane forms the two-dimensional space onto which the SV and

observer positions are projected. Note that for projection

purposes, the center of the observer geometry is located along
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the x-axis at an altitude h above the surface of the earth.

Incorporating the effect of this constraint yields an eight

dimensional parameter vector Ps.

-Ps [ Y1 1 Zl, Y2, z2, Y3, z3, Y4, z4 ] (3-27)

For each SV, this two-dimensional space is further -

constrained by the initial assumption that satellites used must

lie at or above five degrees elevation from the local horizon

measured from the intersection of the y-z axes. The result of

this constraint maps all allowable satellite positions into a

circle of radius Rc centered at the origin of the y-z coordinate

system.

Fig. 3.1 depicts a triangle with angles A, B, and C with sides

opposite these angles given by a, b, and c respectively. From

this figure it can be seen that

I Re I = Rs cos 3 (3-28)

Referring to Fig. 3.1, find the angle C using the law of sines

R5  Re+h -:

= - (3-29)
sin B sin C

where B = 950 .

solving for the angle C yields:
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I-I

i ~FIG. 3. 1. GEOMETRY FOR LOS ELEVATION CONSTRAINT .-
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E(Re+h) sn
C = arcsin (3-30)

Rs -

Now find /3

= 900 -A (3-31)

where

A = 1800 - (B + C) (3-32)

Substituting Rs = 8.4116 x 107 into Eqn (3-28) yields

JEc!= 7.934 x l07 feet (3-33)

This figure is now used to determine when projected satellite

positions violate the LOS elevation constraint. If the

satellite position projection violates this constraint, then it

is reset onto the constraint boundary.

The actual cost gradient, g(Ps), is developed in Appendix

A. This cost gradient is now incorporated into a minimum cost

search as described in the next section.

3.5 MINIMUM COST SEARCH TECHNIQUE

The search technique selected for minimizing the cost

function in this study is a steepest descent algorithm. The

46
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search scheme is based on the premise that the computed gradient

(PFs) indicates the direction of maximum rate of increase in the

cost for a given Ps. Therefore, the negative gradient direction

must represent the direction of maximum rate of decrease in the

cost. It is possible to proceed along the negative gradient

direction until a minimum cost along this gradient is

determined. At this point a new gradient direction is computed

and search proceeds along the new negative gradient direction.

The search continues until the gradient vector computed has a

magnitude smaller than a preset threshold. The initial step

size for the search is chosen by trial and error. It is

important to consider the trade-offs between the number of

intermediate points required to reach the minimum along a

gradient direction and the possibility of grossly overshooting

that minimum when determining the initial step size.

The minimum cost function point along a given gradient

search direction go is found by monitoring the angle condition

between go and gi using the cosine of the angle between the two

vectors. This cosine is computed by using the definition of the

inner product (or vector projection)

< ' = I go 1 _ g i  I cos 0 (3-34)

where 0 is the angle between the two vectors. " "
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Solving for cos 0 ..

cos 0 - (3-35)
I go I I

The minimum cost point along go occurs where gi is orthogonal to

go, i.e. where cosO = 0. When this orthogonality condition is

met, the gi becomes the new go and PSi becomes PSo as shown in

Fig. 3.2.

The vector Psi is computed as

ESi So + Si go (3-36)

where

Si ( 1 + 0.9 cos 0 i-1 ) Si (3-37)

Note that So is the initial step size selected and that the

algorithm automatically reduces the step size as the go,

orthogonality condition is approached. A.

This search algorithm is modified due to the fact that the

satellites may move in either an unconstrained or constrained

manner. Constrained movement is required when the gradient

search direction indicates the satellite should be moved onto or ,-.-4

beyond the Rc boundary. In this study, the constrained and

unconstrained satellite movements are computed independently

using separate initial step size parameters. Now, go is given

by
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V
0 = [ o]CON + [g0 ]UNCON (3-38)

Whenever a satellite reaches the Rc boundary, go is redefined '

and the search begins along the new gradient search direction.

The [go]UNCON is simply redefined using gi for the satellites

that have not reached the boundary and, similarly, PSi becomes

ESo" The [gocON is actually the projection of gi, for the

satellites on the boundary, onto a vector tangent to the

boundary circle at PSi. This projection is done so that, in

approximation, gradient search is done along the circular

boundary as indicated in Fig. 3.3. If, during gradient search

along the boundary, gi indicates satellite movement should be

off the boundary, then go is again reset such that the

appropriate satellite may move off the boundary constraint.

To find [go]CON first define the normal vector at PSi for

the j-th satellite

n = [Yj (3-39

The tangent vector at PSi is then

= [zj , -yj] (3-40)

which is normalized to form the unit tangent vector
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Ut = u~ ~u~j)(3-41)
ut -- ClUzj , yj] (I4

4

The projection angle 0 is given by

CO < gij ' !it>
Cos = (3-42)

I ij I
.,

The projection magnitude is computed as

p..

I [go]cON I I gij I cos (3-43)

Finally, go for the constrained satellite is given as

Ego]CON = 1 [goIcON I ut (3-44)

The termination condition for search in the case of constrained

satellites can obviously no longer be based on the magnitude of

the computed gradient vector being small. The appropriate

termination condition in this case is when the computed gradient

vector is orthogonal to the tangent vector or, in other words,

when the projection of the gradient vector orlto the tangent is

very nearly zero.

Having developed the basic mechanisms for estimation, cost

function computation, and minimum cost search, the analysis is

accomplished. The next chapter reports the results.
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IV. RESULTS
! U-

4.1 INTRODUCTION

In this study, the work accomplished by Lewantowicz in his

December 1985 Master of Science thesis (4) is expanded and used

as a starting point for further research. In particular, the

effect of iterating the error covariance matrix to steady state

after each satellite repositioning movement is examined. This

chapter examines the optimum positions of GPS satellits for the

four, three, and two satellite cases such that minimum errors in 0

the estimate of emitter location are made. The results of theJ.J

four and three satellite cases are compared directly with the

results obtained by Lewantowicz. In addition, the validity of

using a fourth satellite directly overhead to simulate a three

satellite case where each observer has a precise clock is

examined. The performance of the emitter location system is

evaluated for each optimum satellite configuration and the

results are compared.

Using the satellite geometry relations to the cost data

obtained in all the optimization runs, the basic guidelines are

developed for a satellite selection algorithm formulation. The

factors considered in forming the algorithm, as well as

justifying data, are presented in section 4.5.

II
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4.2 FOUR SATELLITE OPTIMIZATION

The four satellite position optimization problem begins

with the SVs and observers in the initial configuration shown in

Fig. 4.1. These positions were selected to correspond with

those used by Lewantowicz so that a direct comparison can be

made. Note not only the initial geometry of the problem, but

also the characteristics of each of the error ellipses. Each

observer error ellipse has a particular size and orientation,

and the emitter error ellipse has important characteristics of

size and elongation, which are ultimately reflected in the CEP. 0

It should be pointed out that the elongation of the emitter

error ellipse, in general, is not taken into account if the

chosen satellite geometry only minimizes the observer navigation

problem. For many practical applications, the orientation and

elongation of the emitter error ellipse is of critical

importance, especially in the case of highly elongated ellipses. "

The initial satellite position data is given in Table 4.1 and

initial error ellipse parameters are presented in Table 4.2.

From this starting point, the goal is to accomplish a

gradient search which will move the satellites to an orientation

yielding minimum emitter MSMD (and CEP). However, before each

of the gradient computations is performed, it is desirable to

,, iterate the error covariance matrix to steady-state at a

constant SV position to examine the Kalman filter convergence -'p

time history.
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Table 4.1. Four Satellite Initial Positions

Azimuth _°1  Elevation I~I LOS Bias (ft)

SV-1 35.0 69.0 9.8

SV-2 228.0 31.9 9.6

SV-3 86.0 18.6 10.7

SV-4 24.6 12.2 9.7

Table 4.2. Four Satellite Initial Error Ellipse Parameters

J Axis 1 (ft) Axis 2 Angle from Y 1  CEP (ft)

Obs-i 16.4 8.7 -49.8 14.8

Obs-2 16.4 8.7 -49.9 14.8

Obs-3 16.3 8.8 -49.9 14.8

Emit 82.5 16.1 0.21 58.0

-'..-
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Although many methods exist to determine the number of

iterations required to reach steady-state operation, this study

examined the relationship between the number of iterations of ,-

the error covariance matrix and the parameters describing the

emitter error ellipse. In particular, the change in magnitude

of CEP, ACEP, from iteration i to i+l is computed and the

minimum value is sought as a function of i. In addition, the

convergence angle, which is the angle between the gradient

vector computed at iteration i and the gradient vector at

iteration i+l, is monitored to determine when the computed

gradient vectors become coaligned. The ACEP for 200 Kalman

filter iterations of the error covariance matrix propagation and

update is presented in Fig. 4.2. Note the rapid drop in CEP

improvement as the iterations increase, with a local minimum

occuring at eight iterations. This minimum is clearly shown on

the expanded iteration scale in Fig. 4.3. The behavior of ACEP

after iteration eight is presented on an expanded ACEP scale in

Fig. 4.4. Note the transient dynamic behavior of the matrix -. %

Ricatti equation solution as reflected by this CEP measure in

Fig. 4.4, and the second local minimum at approximately 35

iterations. From the data presented, the obvious choice for the

number of iterations of the error covariance matrix to use for .

steady state would be one of the two local minima. Due to the

computational loading required to propagate and update the error

covariance matrix at each cost function search point, and the

magnitude of improvement expected with increased iterations, the
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local minimum of eight iterations was selected to approximate

steady-state operation for this study. Gradient vector

convergence at 8 iterations is good, with a convergence angle of

less than 0.6 degrees. With eight iterations established as the

number of iterations prior to each gradient vector computation,

the minimum cost search for the four satellite case is

conducted. Note that the eight iteration figure was obtained

with the satellites and observers only at their initial 0

positions. Therefore, this figure may or may not be appropriate

for all possible scenarios.

The satellite positions determined by the minimum cost

search are presented graphically in Fig. 4.5, with position data

and error ellipse parameters given in Tables 4.3 and 4.4, S

respectively. The paths the satellites "traveled" during the

gradient search in reaching their final positions are shown in

Fig. 4.6. The minimum emitter CEP found is 41.22 feet, down S

from the initial CEP of 58.0 feet. Comparing Tables 4.2 and

4.4, it can be seen that the observer horizontal navigation

errors have been significantly reduced. This reduction results O

from a marked decrease in LOS bias errors as indicated in Table -.

4.3. The reduction in these east-west observer navigation

errors directly affect the shape and orientation of the emitter S

ellipse. In fact, these reductions are the driving force behind

the reduction in the semi-major axis of the emitter ellipse and, .

ultimately, the emitter CEP. Note that three of the four
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Table 4.3. Four Satellite Final Positions

j Azimuth 0°I Elevation f2) LOS Bias (ft

SV-1 275.3 25.0 2.8

SV-2 277.4 24.3 2.9 *"

SV-3 101.5 5.0 2.6

SV-4 13.3 5.0 1.8

Table 4.4. Four Satellite Final Error Ellipse Parameters ,-aJ

J Axis 1 (ft) Axis 2 Angle from Y II CEP (ft)

Obs-1 3.15 2.02 -41.5 3.04 "

Obs-2 3.16 2.02 -42.0 3.05

Obs-3 3.00 1.77 -35.5 2.81

Emit 62.98 7.05 - 0.07 41.22
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satellites tended to align themselves along the east-west axis

in opposition to each other. This alignment produced the noted

reductions in the east-west emitter location error, and reflects .S

the type of optimum geometry expected at the outset of this

study. The fact that the semi-major axis of the emitter error

ellipse lies along the east-west axis is a function of the

observer geometry.

Comparing the results of the four satellite optimization

with those obtained by Lewantowicz (4) indicates that the

satellite positions are within 100 of each other in azimuth and

elevation and the minimum emitter CEPs are within two feet of

one another. This supports the Lewantowicz hypothesis described

in Section 1.5. Next, the three satellite optimization is-

performed.

4.3 THREE SATELLITE OPTIMIZATION

As pointed out in Section 3.3, the cost function used in

this study was formulated for an essentially two-dimensional

problem. This means that the problem is uniquely solved with

only three satellites and the fourth satellite only provides

additional horizontal emitter position information. The

performance of the emitter locating system is evaluated for two

separate three satellite cases; first, one satellite is fixed

overhead and three satellites are allowed to move (see Section
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F 1.5) Vand, second, the measurements from only three satellites

are incorporated into the error covariance computation.

The "pseudo" three satellite case, as proposed by

Lewantowicz (4) uses four satellites with one fixed directly

overhead and is intended to simulate the three satellite case

when each observer has a precise clock. The results of the

pseudo-three satellite optimization are presented in Fig. 4.7

and Tables 4.5 and 4.6. The paths the satellites "traveled" in

reaching their final positions are shown in Fig. 4.8. Note the

* final CEP achieved in the pseudo-three satellite case is 40.71

feet compared to 41.22 feet obtained in the four satellite case.

* These results seem unreasonable since they indicate that the CEP

improved when less position information was available. What has

happened is that a three satellite optimization has not been

performed, but, rather, a constrained four satellite case has

been optimized. The gradient search performed for the

constrained satellite case found a different local minimum than

that found in the original four satellite case. The existence -A.

of this second local minimum indicates that finding a global

minimum using the gradient search algorithm of this study is

highly unlikely. However, the magnitude of the second local

minimum varies only slightly from the first minimum, indicating

that it is reasonable to expect other local minima to result in

nearly the same costs. Note that satellites 1 and 2 in the

pseudo-three satellite case have assumed approximately the same
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Table 4.5. Pseudo Three Satellite Final Positions

J Azimuth 1 0 )  Elevation 1 O1 LOS Bias (ft)

SV-l 277.4 16.7 1.6

SV-2 272.3 17.1 1.7 •

SV-3 47.7 5.0 1.6

Table 4.6 Pseudo Three Satellite Error Ellipse Parameters

J Axis 1 (ft) Axis 2 Angle from Y 1°1 CEP (ft)

Obs-I 2.46 1.55 -88.0 2.34

Obs-2 2.50 1.54 -87.7 2.38 "

Obs-3 1.74 1.35 65.1 1.82 •ti..

Emit 62.33 6.82 - 0.01 40.71

6...
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positions that they did in the four satellite case, adding

Ircredence to the idea of a constrained four satellite case. -

The fact that the pseudo-three satellite optimization

yields better results than the four satellite case indicates

that the simulation of a three satellite case using four

satellites, with one satellite fixed overhead, is not

appropriate. This is further verified by the following true S

three satellite optimization.
•~ 1

For the true three satellite case, the measurements from

only three satellites are incorporated in the error covariance

matrix. The three satellite optimization results are given in

Fig. 4.9 and Tables 4.7 and 4.8. Again, satellite tracks are

indicated in Fig. 4.10.

The results in Table 4.8 are reasonable for the three S

satellite case, with the CEP of 43.01 feet slightly higher than

the CEP of 41.22 feet obtained in the four satellite analysis,

as expected. This is because the problem is essentially planar

and three satellites are sufficient to determine position and

user clock bias states. The barometric altimeter still

stabilizes the INS vertical channel, but the large vertical

position errors do not affect the planar emitter location

problem. Note that the optimum satellite positions in the true

three satellite case are considerably different from those
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Table 4.7. Three Satellite Final Positions

J Azimuth IJI Elevation o)_ LOS Bias (ft)

SV-I 299.6 22.4 3.1

SV-2 244.6 11.8 4.5 0

SV-3 105.9 9.3 3.7

..

Table 4.8. Three Satellite Error Ellipse Parameters
. °

J Axis 1 (ft) Axis 2 Angle from Y I-°I CEP Ift)

Obs-i 6.00 3.57 62.8 5.64

Obs-2 5.99 3.61 62.5 5.65

Obs-3 5.51 3.51 59.8 5.31

Emit 64.62 8.44 - 0.12 43.01
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obtained in the pseudo-three satellite optimization. The true

three satellite optimization yields satellite positions which

correspond to those anticipated at the outset of this study.

SV-l and SV-3 have assumed positions such that they reduce

observer position errors primarily in the east-west direction

and have also essentially aligned themselves so that LOS bias

errors are reduced. This can be seen in Table 4.7 where SV-I

and SV-3 have the smaller LOS bias terms. SV-2 has taken up a
,. .,

position which is nearly symmetric with SV-I about the east-west

axis. r P

4.4 TWO SATELLITE OPTIMIZATION

Again, as in the three satellite optimization, only

measurements from the appropriate number of satellites are used

in computing the error covariance matrix updates. This presents

a problem in the two satellite case since, in general, three SVs 0

are required to solve for a two-dimensional position and user

clock bias. For the two satellite case in this study, the

navigation filter is iterated to steady-state using measurements

from four available SVs before operation is degraded to two

satellites. This allows the Kalman filter to converge on

accurate estimates of user clock bias and user clock drift -

states before degraded operation begins. Using these state

estimates makes it possible to propagate the user clock bias

fs.ward with sufficient accuracy for some period of time.
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The gradient search scheme converges on the optimum

satellite configuratin more quickly for the two satellite case

than in the searches with more SVs. This is due in part to the

fact that both satellites move onto the five degree constraint

boundary and remain there. The optimization results are

presented in Fig. 4.11 and Tables 4.9 and 4.10. Satellite paths

to the optimum positions are shown in Fig. 4.12.

Note that for the two satellite case, SV-2 has again

aligned itself along the east-west axis to provide maximum

information along the long axis of the emitter error ellipse.

Additionally, SV-l has assumed a position that provides

essentially the same amount of information in the y and z

directions. The increase of approximately 13 to 15 feet in

emitter CEP over the previous cases is reasonable since the

system is depending upon filter estimates for user clock bias.

It is significant to note, however, that the system is able to

achieve good performance for some period of time, even when only

two satellites are available for measurements. '

The satellite geometry data obtained in the previous

optimization cases is now used to develop a satellite selection

algorithm that will minimize emitter CEP.
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Table 4.9. Two Satellite Final Positions

I Azimuth ° Elevation 1 -° LOS Bias (ftr

SV-I 143.9 5.0 1.80

SV-2 I 268.8 5.0 1.82 %

Table 4.10. Two Satellite Error Ellipse Parameters

J Axis 1 (ft) Axis 2 Angnle from Y I~I CEP (ft)
0

Obs-i 13.53 2.96 66.6 9.70

Obs-2 12.83 2.98 60.7 9.30

Obs-3 14.92 2.97 60.6 10.54
0

Emit 82.95 12.66 0.89 56.28
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4.5 SATELLITE SELECTION ALGORITHM

When developing a satellite selection algorithm, there is a

tradeoff between making the selection criteria restrictive

enough to provide acceptable emitter CEPs and liberal enough to

allow a wide range of possible satellite solution geometries.

The basic approach used in this study is to examine the

sensitivity of the emitter CEP to variations in satellite

position from the optimum.

S.w

The previous optimization results indicate that the primary

satellite(s) should be aligned along the semi-major axis of the

emitter error ellipse. In addition, if more than two satellites

are available, the primary satellites tend to lie along

essentially the same LOS. Comparison of the different

optimization results is useful to show trends in solution

geometry. These trends are very useful in developing selection

criteria. The final satellite positions for the four satellite

optimization in Fig. 4.5 show SV-l and SV-2 very close to

alignment with the semi-major axis of the emitter error ellipse

and along the same LOS as SV-3. Note that SV-4 is positioned to A

provide information primarily along the direction of the semi- 21

minor axis of the emitter error ellipse. Comparing these

positions with the pseudo-three satellite case of Fig. 4.7,

where SV-4 provides no horizontal position information, 5-'

indicates that SV-I and SV-2 assumed approximately the same
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positions, while SV-3 moved to a position that provides more A

information along the semi-major axis to compensate for the loss

of information from SV-4. In fact, SV-3 provides equal

information in each axis direction of the emitter error ellipse.

The three satellite case in Fig. 4.9 indicates SV-3 is the

primary satellite, while SV-1 and SV-2 have taken up positions

providing information primarily along the semi-major axis, but S

also some information along the semi-minor axis. It is the

tradeoff between this semi-major and semi-minor axis information

that is instrumental in algorithm development. In the two

satellite case, SV-2 is the primary satellite and SV-I moves to
.1"

the equal information position as shown in Fig. 4.10. These

comparisons, then, form the basis for selection criteria.

Selection criteria are summarized as follows:

1. Primary satellite(s) should lie along the semi-major

axis direction of the emitter error ellipse at an elevation

of 10-250.

2. Primary satellites should lie along the same LOS to

reduce LOS bias errors.

3. Additional satellites should be selected to provide

adequate information in the general semi-minor axis

direction.

800
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Satellites are selected which meet the criteria or come

closest to satisfying them. Optimization results indicate that

as the primary satellite(s) move closer to the semi-major axis

direction, the additional satellite(s) move toward the equal

information position. The three satellite case illustrates the

situation where all the satellites are equally dominant, i.e.

all are at approximately the same angle with respect to the

semi-major axis of the emitter error ellipse. The selection

algorithm must be implemented in such a way that, as less

information is available along the semi-major axis direction,

additional satellites are selected to provide information

primarily along that direction.

The amount of change in emitter CEP as the satellites

deviate from the optimum positions is addressed somewhat in this

study, though not specifically. Gradient search data indicates

that large changes in satellite azimuth can be made with

relatively little effect on the CEP. This is encouraging
%

because it opens a wider window for satellite selection, while

maintaining a reasonable CEP. Data regarding CEP change versus

satellite elevation is not so readily available, but changes in

elevation in the range of interest (up to 150) should not result

in significant increases in CEP.

8

4-:
81

°'.4



V. CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

This study shows that emitter location errors can be

significantly reduced by selecting satellites according to the

selection criteria presented in Chapter 4, rather than by

minimum GDOP criteria. Three satellite performance is nearly as

good as that obtained using four satellites, since only three

satellites are necessary to determine the emitter horizontal

position and user clock bias. When operation is further

degraded to the two satellite case, emitter location is still

slightly better than that obtained using four satellites

selected to minimize GDOP.

Although the global minimum of the CEP cost function was

not found, the local minima obtained for all of the fully

determined cases agreed very closely. This indicates that

little improvement in CEP can be expected beyond what is

achieved in this study. S

Iterating the error covariance matrix to steady-state after

each satellite movement does not have a significant effect on

either the final optimized satellite positions or on the minimum

CEP obtained. This verifies the hypothesis by Lewantowicz (4)

that using only a single iteration of the navigation Kalman .
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filter between satellite movements without reinitializing, does

not significantly affect the results. Modifications to the

gradient search routine did, however, result in more uniform, .4.

well-behaved "tracks" for the satellites as they moved to their

optimum positions.

5.2 RECOMMENDATIONS

Since the weighted gradient search routine used in this

study is highly unlikely to converge to the global minimum,

another approach should be used that has a higher probability of

finding the global minimum. It may be necessary to compute the

cost at a very large number of random points in the eight-

dimensional Ps space to identify candidate regions in which to

perform gradient searches for the global minimum.

The computational loading required to perform the weighted

gradient search to the local minimum is enormous. This is due

in part to the nature of the gradient search, in that it tends

to converge at a rapid rate initially, but converges very slowly

as it nears the minimum. The possilility of searching initially

using the weighted gradient method, since it guarantees that at

least a local minimum will be found, and then switching to a

more rapidly converging algorithm, such as the Newton-Raphson --. 4

method, as the minimum cost is approached, should be explored.
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The selection criteria established in Chapter 4 should be

used to select satellites from a real-world constellation of

available satellites. The emitter CEP obtained using these

"optimum" satellites could then be compared to the CEP obtained

using satellites selected using minimum GDOP criteria. This

would provide a "real-world" performance evaluation of the

emitter location system proposed in this study.
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Appendix A: Cost Gradient Function Derivation
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APPENDIX B

COST GRADIENT FUNCTION DERIVATION

The cost function derived in Section 2.6 is

J - tr [EP ] (B-i)

where E is an n x n constant matrix consisting of zeros except for the

two diagor ' elements, corresponding to the two states that represent the

horizontal emitter position errors, which are - 1.0. The matrix P+ is

the n x n symmetric error covariance matrix at time k. However, at a

fixed k, P+ is a function of only the variables with respect to which

the cost J will be minimized.

The positions of GPS satellites or the positions of observers, or

both, could be the variables of J. In fact, Chapter 4 covers

optimization with respect to CPS positions, and Chapter 5 covers

optimization with respect to both GPS and ooserver positions. Define the

vector P. as the vector of those position variables. Then the cost J

is a scalar function of Ps.

J - j {p+}

- J {P [H]

= j {P+[H(P] (B-2

where H is an m x n measurement sensitivity matrix and P3 is

dimensioned vector.

In finding the minimum of a function, ,

in several minimum cost search algoritnm-.
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T . aJ (B-3)iPs

Using the chain rule of partial derivatives

T - J - H (B-4)

where the first term is an m x n matrix and the second term is m x n x Z

third order tensor.

The first partial derivative term of Equation (B-4) is derived.

J v tr [EP'j

W tr [E(HTR- ' H + P- ] (B-5)

Then the variation In J is

6J - tr [E6P + ] (B-6)

where 6 is the variation symbol '.

6P+ = - (HTR-'H + P- ) (6HTR-' H HR - ' 6 H)(HTR R
- ' H P- )

P+(6H T R H + HT R- ' 6H)P +  (B-7)

Therefore, Equation (B-6) becomes

6J - tr [-EP+(6HTR - 1 H + HTR- ' 6H)P 
]  (B-8)

however, tr [AB] - tr [BA]

6J " tr[-P+EP+(6HTR- 1 H + HTR
- ' 6H)] (8-9)

-34,- '"*



however, tr[A] - tr [A T]

Thus the variation in cost J, with respect to the measurement sensitivity

matrix H, becomes

6J - tr[-P+EP+(H T R'6H +H T R-6H)]

M -2 tr[P+EP+H T R-6H] (B-10)

Using the result attributed to Kleinman, D.L. in [10]; given

f(X) - tr[M(X)] (B-1l)

where f is a scalar function of the matrix X, and M(X) is a matrix valued

function of the matrix X then in

M( + cAX) - M() - etr[M(X)AX] (B-12)

as c > 0. The derivative of a scalar function f with respect to the

matrix valued variable X is%

3f(X) T
ax M MX (B-i3)

Thus the variation Equation (B-8), expressed as a partial derivative

becomes

3 - 2[P+EP+H R-.1T

-- 2R-'HP+EP+ (B-1l4)

where 3J/3H is an m xn matrix.

A, 3



Next, the 3H/P. is simply an element by element partial

derivative of H with respect to each element of the vector Ps. For

Ps of dimension L, there are L m x n matrices, the third-order tensor,

of partial derivatives. Thus each component of the cost gradient vector

is computed according to

T aJ DH

-s

m n aJ j H (
- X X (i,j) F (i,J) (B-15)

i- j 1 -s

where DJ/aH is computed as shown in (B-14). Computation of aH/aPs(k)

matrices is presented in Appendices C and D for GPS only and for GPS with

observer optimizations respectively.
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